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There is intense current research activity in the area of
molecular linear and nonlinear optics, devoted to the search for
efficient, stable, simple organic chromophores exhibiting large
first or second hyperpolarizabilitiés? Several promising
structural motifs have been identified; however, the simple

planar ones (strong donor or acceptor substituents linked by a

polyene, heterocyclic, or aromatienetwork) are still the most
commont~* Computational analysis has proven extremely

is due to vibrational (mid- and far-infrared) or mixed-valence
near-infrared transition’s. The oscillator strengths of such
transitions are usually too weak to act as efficient absorbers.
We report here a simple class of donor/bridge/acceptor
chromophores (3,5-dialkyl*® -dialkyl-4-quinopyrans|, and
their zwitterionic forms,I1)° that provides both very large
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tunable first molecular hyperpolarizabilities and near-infrared

valuable in suggesting new candidate species and in understandcrOSS'SeCtionS. The structural characteristic that promotes these

ing the nature of the nonlinear response in a variety of molecular
chromophore4> Another optical property of substantial tech-
nological importance, which has been much less studied, is
tunable, strong absorbance in the infrared re§ioBtrong IR
absorbers are of interest for filters, polarizers, optical recortling,
photodynamic therap¥etc. Most molecular infrared absorption
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optical features is a stereochemically enforced break in the
conjugation that enforces zwitterionic behavior in the ground
state, and provides a strong intramolecular excitation feature
of low energy and high oscillator strength.

Chromophore set undergoes distortion from a planar
quinoidal geometry to a charge-separated zwitterionic geometry
Iy with an increase in the dihedral twi€t While a biradical
vs zwitterionic electronic ground state for twisted ethylene has
been a subject of much debafeit is expected®®9 that an
unsymmetrically substituted alkene such laswill have a
zwitterionic singlet ground state & ~ 90°. This arises
principally from aromatic stabilization of the phenolate and
pyrilium rings in the twisted geometry.

The geometries of the subject chromophores were fully
optimized using the AM1-parametrized NDDO Hamiltonian
incorporated in the MOPAC packadk.The steric bulk of the
R substituents was varied to enforce increasing value8. of
The linear optical and SHG coefficients taf were computed
at various imposed values 6f Note that the geometries were
not optimized at these imposed twist angles. Computations of
molecular linear absorption and first hyperpolarizabifitwere
carried out using the ZINDO semiempirical electronic structure
model Hamiltoniart2 Singly excited configuration interaction
was used for both properties; in molecules of this sort, ample
literature precedent suggests that these calculations are
reliable#13-15

In Figure 1A, the variation of the absorption maxima of
chromophorda (variablef) and set (open circles) are plotted
as a function of. The inset shows the corresponding transition
moments of the associated optical excitations. In Figure 1B
are plotted the variation ifi,ec of chromophorda as a function
of 6 (filled circles) and theBvec values of chromophore sét
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© R = Alkyl ; Full AMJ Optimized Gometrics of chromophordd (6 = 104°). A full 3-21G-optimized geometry is
_1500.0[ S used in the calculation.
%1000.0— i archetypical NLO chromophore 4NN '-dimethylamino)-4
ot nitrostilbene (DANS), at the same frequency. The optical

absorption maximum ofe shifts to the infrared region, with
somewhat diminished but appreciable cross-section, n€ar 90

= B 0 0.0 (Figure 1A). This transitjon is, in fact, ar)alogous to the
Dihedral Twist Angle 6 (deg) intervalence transfers of mixed valency found in binuclear metal
complexes, but exhibits much greater oscillator strength because
0.1 eV (closed circles) as a function of the dihedral angle of of the S|gn|f|c§lnt remaining .orblt[al derlap in the two ort.hogonal
chromophorda. Open circles represent the corresponding values of fragr_nents (Flgyre _2)' This Slgr}Iflc_ant overlap provides the
chromophore seft. The inset in (A) shows the transition moments of dominant contribution to the excitation and NLO response.
the first excited state. The present behavior of linear and NLO response properties
can be understood in several ways: bond alternation in structures
| and Il is entirely different, and the zwitterionic structure
provides alternation patterns that promote large hyperpolariz-
abilities1416 Perhaps more simply, both the two-level model
for the hyperpolarizabilitty and the very simple HOM©
LUMO picture for the optical absorption suggest that, by
conformationally-induced breaking of the-conjugation and
formation of a zwitterionic structure (similar to the twisted
intramolecular charge transfer (TICT) st)ethe steric repul-
sion provides a low-energy, strongly allowed optical feature that
facilitates strong linear and unprecedented NLO response. The
ramifications of these observations are currently under inves-
tigation.
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Figure 1. Variation of Amax (A) andfec (B) at an excitation energy of

(open circles). Note the close correspondence ofjhevalues

at corresponding values 6f indicating substitutional tunability

of response properties. The unsubstituted planar molecule (with
a fully conjugated backbone) exhibits a small first hyperpolar-
izability (u8° = 27.9 x 1078 esu); however, this hyperpolar-
izability becomes extremely large£°(89°) ~ 30 000x 1048

esu) when6 approaches~90°. While none of the fully
optimized geometries of chromophore $etxhibit a dihedral
angle of~90°, the fully optimized geometry di, with bulky
tert-butyl substituents, exhibits a dihedral angle of 1@#4d a

upB of ~25000x 10~48 esu at an excitation energy of 0.65 eV.
This response is 2 orders of magnitude larger than that of the
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